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Abstract. Shape from texture has received much attention in the past
few decades. We propose a computationally efficient method to extract
the 3D shape of developable surfaces from the spectral variations of a
visual texture. Under the assumption of homogeneity, the texture is rep-
resented by the novel method of identifying ridges of its Fourier trans-
form. Local spatial frequencies are then computed using a minimal set
of selected Gabor filters. In both orthographic and perspective projec-
tion cases, new geometric equations are presented to compute the shape
of developable surfaces from frequencies. The results are validated with
semi-synthetic and real pictures.

1 Introduction

Shape from Texture was first introduced by Gibson 50 years ago. In [1] he sug-
gests that texture can provide an important shape cue. However, for a machine
the solution to this problem is ill-posed. Shape from texture is generally about
measuring the texture distortion in an image, and then reconstructing the sur-
face 3D coordinates in the scene ([2], [3], [4], [5]). The model for the texture
can be either deterministic or stochastic. The second allows a wider variety of
textures ([4], [5], [6]) and implies local spectral measurements, usually with the
Fourier transform ([5]), or more recently, wavelets ([3], [7]).

An initial assumption about the texture is always necessary, and a restrictive
one can preclude applicability to real surfaces. [8] deals with texels, which are
seldom found in nature, while [9] assumes isotropy, rarely the case. Homogeneity
is more frequently used ([4], [2], [7]), and is the one we choose here. For de-
terministic textures it can be seen as periodicity, for stochastic textures it can
be formalized as stationarity under translation ([5]). Under this condition we
assume that all texture variations are produced only by projective geometry.

We consider the cases of an orthographic camera model, as in [6] and [10],
and of a perspective camera model, as in [11] and [12]. In both cases advantages
and disadvantages are presented and results are compared.

The present work takes its motivation from [12]. The texture is analyzed using
Gabor filters to produce distortion information based on local spatial frequency
(LSF). Unlike [12], we do not just rely on a dominant LSF, but we consider
groups of LSFs. This extends [12] to exploit the multi-scale nature of textures.
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To our knowledge the algorithm presented here is the first to consider the multi-
scale nature of texture to the extent of using all main LSFs, most of the related
work uses only two preferred directions in the spectral domain (e.g. [6],[13]).

Furthermore we present here new geometric equations to compute the 3D
coordinates of a developable shape from its LSFs, both in the orthographic and
in the perspective case.

Section 2 explains in detail how the texture is analyzed to produce distortion
information. Section 3 presents the projective geometry. Section 4 shows how we
can recover the 3D coordinates from the measured texture distortion. Finally,
section 5 presents results.

2 Texture Description

Here we describe how to set 2D Gabor functions and their first derivatives from
the information on texture supplied by the Fourier transform. The former provide
local analysis to compute instantaneous frequencies, which are used to measure
distortion and reconstruct the 3D coordinates of the texture surface.

2.1 Estimating the Instantaneous Frequencies

We can analyse an image I(x) using a band-pass filter h(x,u), a function of
a point x and of a central frequency u, which is convolved with the image to
provide the local spectrum. As in [12] we choose 2D Gabor functions:

h(x,u) = g(x)e2πjx·u where g(x) =
1

2πγ2
e
−(x·x)

2γ2 , (1)

with j the unit imaginary and g(x) a 2D Gaussian function with variance γ2.
For a 2D cosine f(x) = cos(2πΩ(x)) the instantaneous frequency is given by

ũ(x) = (ũ(x), ṽ(x)) =
(

∂Ω

∂x
,
∂Ω

∂y

)
. (2)

Our goal is to measure ũ(x). [14] shows that this can be done by considering a
Gabor function h(x,u), and its two first order derivatives, hx(x,u) and hy(x,u):

|ũ(x)| = |hx(x,u) ∗ I(x)|
2π|h(x,u) ∗ I(x)|

|ṽ(x)| = |hy(x,u) ∗ I(x)|
2π|h(x,u) ∗ I(x)| . (3)

This estimate can be assumed to be correct if the measured frequency is in
the pass-band of the filter. This method implies that we choose the central
frequencies u and the spatial constants γ of the Gabor functions, i.e. their centers
and width. The filters have constant fractional bandwidth (bandwidth divided
by center frequency). This allows us to measure higher frequencies more locally
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Fig. 1. Setting the Gabor filters’ parameters

than lower frequencies and is computationally less expensive. Moreover, as all
filters so derived are geometrically similar it is simpler to compare their outputs.

We set the Gabor functions using the information from the Fourier transform
of the texture. Unlike Super and Bovik ([12]), who sample the whole 2D frequency
plane, we make a selection of Gabor filters using ridges in the Fourier transform
of the image. In our algorithm every ridge determines a set of Gabor filters that
covers the corresponding values of frequencies. Every ridge therefore determines
different instantaneous frequencies and thus different distortion measures.

2.2 Setting the Gabor Filter Parameters

Let us consider a 1D cosine (figure 1(a)). The signal has length of 128 samples and
frequency ũ ≈ 0.42 rad/s (where π rad/s is by convention the biggest admissible
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frequency). Figure 1(b) represents its spectrum amplitude, two symmetric spikes
at the corresponding frequencies (≈ ±0.42 rad/s). A chirp is shown in figure 1(c),
i.e. a cosine with frequency varying from ũ ≈ 0.42 rad/s to ũ ≈ 1.27 rad/s. Figure
1(d) illustrates its spectrum, where significant non-zero values span that range.

Analogously we show a 2D image generated by a 2D cosine with frequency
|ũ| ≈ 0.42 rad/s (figure 1(e)) and its spectrum (figure 1(f)), given by symmetric
spikes in the frequency plane. We then compare this to figures 1(g) and 1(h), the
image of a 2D cosine with frequency ranging from |ũ| ≈ 0.42 rad/s to |ũ| ≈ 1.27
rad/s and its spectrum (circles are fully explained later). In the latter, significant
non-zero values form a ridge corresponding to the range of frequencies. Figures
1(g) and 1(h) were actually generated by slanting (see section 3) image 1(e)
through 38◦. The ridges of the amplitude of the Fourier transform of the image
represent the 2D frequencies contained in the texture.

The algorithm we propose analyzes the spectrum of the texture to determine
its ridges, and then uses this information to define the sets of Gabor functions
used. Figure 1(h) shows the chosen set of central frequencies u (the centers of
the circles) and the set of spatial constants γ (their radii); half of the spectrum
is considered because of its redundancy. There is significant overlapping (50%)
to produce a robust LSF estimation. However, unlike in [12], where 63 central
frequencies and spatial constants sample the whole 2D frequency plane, here the
number used varies with the image. 7 u’s and γ’s are used in figure 1(h). This
implies a significant reduction of the computational expense: in [12] 63 u’s and
γ’s correspond to 378 convolutions (the Gabor filter and its first order derivatives
and an equivalent number of post-smoothing filters); in this case 7 u’s and γ’s
mean 42 convolutions, with a computational saving of about 89%.

We now consider multiple frequencies. Figure 1(i) shows a superposition of
the cosine from the previous example (|ũ1| ≈ 0.42 rad/s) on another with fre-
quency |ũ2| ≈ 0.63 rad/s, separated by 45◦ degrees from the first in the frequency
plane. In this case the spectrum amplitude (figure 1(j)) has four peaks, corre-
sponding to the values of the two frequencies of the cosines. In fact we can
associate two instantaneous frequencies to each point, which coexist at every
pixel. Figure 1(k) shows the result of applying the same slant as in 1(g): each
cosine now has a continuously-varying frequency. Moreover the two LSFs change
independently from each other, i.e. the first assumes the same values as in fig-
ure 1(h) and the second forms corresponding ridges in the direction of the slant.
This is illustrated in figure 1(l), where the two ridges are functions of the original
frequency and of the distortion due to the slant.

Our algorithm detects the two ridges and sets two groups of Gabor filters. In
each group the central frequencies, u, and the spatial constants, γ, are defined
so that the filters cover the respective ridge area (figure 1(l)). Every set of filters
is processed as in the previous example, i.e. as if the texture contained only one
corresponding LSF. Thus each set of filters reconstructs an instantaneous fre-
quency for each pixel. LSFs measure distortion and are combined to reconstruct
the shape (see section 4). In this sense we exploit the multi-scale nature of the
texture, because all different-scale frequencies are considered in the final result.
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3 Projection of Texture

Here we describe the viewing geometry and a projection model, to provide a
relationship between the surface texture and the image plane frequencies as a
function of the shape of the surface. We then present a surface texture model.

3.1 Viewing Geometry and Projection Model

We adopt the viewing geometry and projection model of [12], and from that we
take our motivation to extend the theory to general developable surfaces. They
deal with the case of a planar surface and assume a pin-hole camera model.
Their coordinate systems are given in figure 2. In this figure, the origin of the

Fig. 2. Viewing geometry and projection model

world coordinate system xw = (xw, yw, zw) coincides with the focal point and
the optical axis coincides with the −zw-direction. The image plane coordinate
system xi = (xi, yi) is placed at zw = f < 0, with |f | being the focal length,
such that xi = xw and yi = yw. The orientation of the surface is described
using the slant-tilt system: the slant σ is the angle between the surface normal
and the optical axis, with values ranging from 0◦ to 90◦; the tilt τ is the angle
between the xi-axis and the projection on the image plane of the surface normal,
with values between −180◦ and 180◦. The surface is described by the coordinate
system xs = (xs, ys, zs): the xs-axis is aligned with the perceived tilt direction,
the zs-axis is aligned with the surface normal, ys forms a right handed orthogonal
coordinate system and the origin of xs is on the intersection of the surface with
the zw-axis, at zw = z0 < 0.

[12] illustrates the equations for transforming 2D surface to 2D image co-
ordinates, and vice versa, under perspective projection. Most importantly, they
derive the relationship between the instantaneous frequencies on the image plane
ui = (ui, vi) and those on the surface plane us = (us, vs):

us = J t(xi,xs) · ui. (4)
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J t, the transpose of the Jacobian of the transformation, is

J t(xi) =
sin σ

zw

[
xi yi

0 0

]
+

f

zw

[
cosσ cos τ cosσ sin τ
− sin τ cos τ

]
, (5)

where zw is the corresponding coordinate, in the xw coordinate system, of the
surface point which projects to the image point xi.

The above described coordinate systems can be easily extended to general
developable surfaces: assuming that the surface is smooth and that at any point it
can be locally approximated with the corresponding tangent plane, the equations
from [12] then apply to the tangent plane of the considered point.

Given the homogeneity assumption in section 1, frequencies us corresponding
to the same LSF must be the same. However the xs coordinate system changes
from point to point on the surface texture according to the tilt-direction, because
the xs axis is aligned with it. In particular, between two image points x′i and
x′′i with measured frequencies u′i and u′′i , if the difference of tilt-direction of the
corresponding points on the surface is ∆τ = τ ′′ − τ ′, we have:

u′s = u′′s (6)

J t(x′i) · u′i =
[

cos ∆τ sin ∆τ
− sin ∆τ cos ∆τ

]
J t(x′′i ) · u′′i (7)

where the matrix rotates the xs coordinate systems by ∆τ to align them.
Eq. 7 also applies in cases of orthographic projection: the relation between

the surface tangent and the image coordinates in [12] reduces to

xi =
[

cos σ cos τ − sin τ
cos σ sin τ cos τ

]
xs, (8)

and the J t in eq. 7 becomes J t =
[
cosσ cos τ cos σ sin τ
− sin τ cos τ

]
. (9)

3.2 Surface Texture Model

We model textures as due to variations of surface reflectance, the proportion
of reflected light. We assume surfaces with Lambertian reflection, and that the
texture is therefore ‘painted’ on them, without roughness or self-occlusion.

Surface reflectance, ts(xs), and image reflectance, ti(xi), are related by

ti(xi) = k(xi) · ts[xs(xi)], (10)

where xs(xi) represents the perspective backprojection, while k(xi) is a multi-
plicative shading term. [11] shows how to estimate and remove k. However, if
the scale of variation of ts is small compared to the scale of variation of the
shading term, then the latter can be assumed to be constant in any small neigh-
borhood. Moreover, our method automatically normalizes for slow variations in
illumination, shading and surface texture contrast, because it uses frequencies
rather than amplitudes. Also no assumption is made about the textural nature
of ts(xs), thus it might apply to various patterns, e.g. lines, blobs, etc.
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4 Computing Surface Orientation

We explain here how our algorithm processes the image texture to produce the
shape of the surface texture.

After the LSFs are computed as indicated in section 2, eq. 7 is used to esti-
mate the corresponding σ’s and τ ’s on the surface (the orientation parameters),
results are then combined and used to reconstruct the shape.

In the orthographic case, substituting for J t from eq. 9 in eq. 7 we get two
equations in 4 unknowns: σ′, τ ′, σ′′, τ ′′. Assuming we know the orientation (σ′,
τ ′) of the tangent plane at point P ′, the surface texture point which projects to
x′i, we can solve eq. 7 for σ′′ and τ ′′ (the orientation parameters at point P ′′,
respectively corresponding to x′′i ). The analytical solution for τ ′′ is

τ ′′ − τ ′ = tan−1 u′ sin τ ′ − v′ cos τ ′ − u′′ sin τ ′ + v′′ cos τ ′

cos σ′(u′ cos τ ′ + v′ sin τ ′) + u′′ cos τ ′ + v′′ sin τ ′
= ∆τ, (11)

which provides two values in the [0, 2π] range, as for the well-known tilt-ambiguity:

τ ′′ =
{

τ ′ + ∆τ
τ ′ + ∆τ + π

. (12)

σ′′ is given by

σ′′ = cos−1

[
cos σ′(u′ cos τ ′ + v′ sin τ ′) + u′′ cos τ ′ + v′′ sin τ ′

cos(τ ′′ − τ ′)(u′′ cos τ ′′ + v′′ sin τ ′′)
− 1

]
. (13)

The perspective equations are obtained by substituting for J t from eq. 5 in eq.
7. In this case, besides the σ’s and τ ’s, z′ and z′′ are unknown, the zw coordinates
at the surface points P ′ and P ′′. As in the orthographic case, we assume z′, σ′

and τ ′ are known, i.e. the position and orientation of P ′ are assumed known.
Furthermore z′′ is inferred from the assumed orientation parameters, and then
refined once the values of σ′′ and τ ′′ are computed: in the first instance z′′ is
assigned a value as if P ′′ lied on the tangent plane at P ′ (its orientation is given
by σ′ and τ ′), this produces two equations in two unknowns and enables us to
compute σ′′ and τ ′′, which are then used to refine z′′. Experimental results show
that assuming P ′′ initially on the tangent plane at P ′ gives accurate results
for σ′′ and τ ′′ if P ′ and P ′′ correspond to close points on the image plane. Our
algorithm therefore uses a known point P to compute the orientation parameters
of its neighboring points. Below is the closed form solution for τ ′′

τ ′′ − τ ′ = tan−1

(
− b

a

)
= ∆τ, (14)

where a =
sinσ′

z′
(u′x′ + v′y′) +

f

z′
cosσ′(u′ cos τ ′ + v′ sin τ ′) +

f

z′′
(u′′ cos τ ′ + v′′ sin τ ′), (15)

b =
f

z′
(v′ cos τ ′ − u′ sin τ ′) +

f

z′′
(u′′ sin τ ′ − v′′ cos τ ′), (16)
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giving two solutions (eq. 12) corresponding to the well-known tilt-ambiguity. σ′′

is then given by

σ′′ = sin−1 −c(b + d)± |d|√c2 − 2bd− b2

c2 + d2
, (17)

where b is as above and c =
1
z′′

sin(τ ′′ − τ ′)(u′′x′′ + v′′y′′), (18)

d =
f

z′′
sin(τ ′′ − τ ′)(u′′ cos τ ′′ + v′′ sin τ ′′). (19)

The two sets of equations show how a single LSF can be used to compute
the σ’s and τ ’s, point after point, at all image points, and hence reconstruct
the shape. However we choose to use the LSFs combined in pairs in order to
get a more robust estimation: for each image point each of the two LSFs gives
a solution (σ, τ), then the one that best approximates the equation defined by
the other is chosen. Experimental results show that this produces more robust
estimates than if finding a solution numerically by combining the equations for
the two, or even more, LSFs. Note that this does not reduce the applicability of
our method because most real textures have at least two LSFs.

For computing the shape, our algorithm needs a starting point with known
orientation. As in [13], we consider the following alternatives: the orientation of a
point can be manually input, or we can assume that the image displays a frontal
point (for which σ = 0), which can be detected using the method of [6]. The latter
easily integrates with our algorithm, because it uses the same Gabor filters which
we adopted for computing the LSFs, and is therefore convenient because most
of the computation is shared with the LSF estimation. As described in section
2.2, we do not use the whole lattice of filters, but we choose to separate and
process only the relevant LSFs which we determine via the Fourier transform. In
particular, the spectral second-order moments defined in [6] are here computed
using two LSFs, as if the spectrum of the image contained only them:

F (u) = δ(u− u1) + δ(u− u2). (20)

The product of the canonical moments
√

mM (see [6]) reduces therefore to
√

mM = |u1v2 − u2v1|. (21)

It can be shown that the above is the inverse of the area gradient (see [2]),
computed using the two frequencies. As in [6], the minimum gives the frontal
point (σ = 0), while the gradient direction gives the initial τ value.

With the method described, we get two reconstructed shapes for each pair of
LSFs. By using eq. 4 and 7 and the determined σ’s and τ ’s, we can backproject
the frequencies ui to the surface texture and align them. The homogeneous
assumption states that the frequencies computed in this way should be the same
and that their variance should therefore be zero. Hence we choose the shape
associated with the lowest variance, assuming that lower values, closer to the
ideal zero value, correspond to better estimates.

Below is the proposed algorithm:
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– The spectrum amplitude of the image is analyzed and ridges are detected.
– Each ridge determines a set of Gabor functions and their first derivatives,

so that the filters cover the frequencies pertaining to the particular ridge.
– For each set of filters the following steps are repeated:

• the image is convolved with the Gabor filters and their derivatives, and
the outputs are smoothed with a Gaussian to reduce noise;

• the Gabor filter with largest amplitude output is selected at each point;
• the instantaneous frequencies are computed at each point (eq. 3).

– For each pair of LSFs the orientation of a point is manually input or a frontal
point is found (eq. 21).

– For each pair of LSFs a shape is reconstructed (eq. 7) and the variance of
backprojected and aligned image frequencies is computed.

– The best shape is chosen according to the lowest variance.

We plan to use the backprojection of frequencies, and their theoretical equal
values, in order to identify and discard possible outliers. Also, as many of the
reconstructed shapes from the pairs of LSFs are accurate, future work might
address combining these to produce better estimates.

Finally, the algorithm lends itself to parallel implementation, because ridges
and filters can be processed independently and implemented by different units.

5 Results

We demonstrate our method on two sets of images. The first images (figures
3(a),(b)) were synthesized by mapping real textures from the Brodatz database
([15]) onto cosine surfaces (figures 3(c),(f)) and then rendering as a new image.
The second (figures 4(a),(d),(g)) are real images acquired with a Pulnix TM-6EX
camera. They are the central parts of 640x480 pictures of textured objects laid on
a cylinder. Being real images, they are affected by variations in illumination, self
shadowing (4(a)) and imperfections (4(g)). The images were not retouched before
processing, and are 128x128 pixels with 256 levels of gray, with the exception of
4(g), which shows the case of a bigger extracted image (180x180).

Figures 3(d),(g) and 4(b),(e),(h) show the shapes reconstructed via the ortho-
graphic equations (9,7), while figures 3(e),(h) and 4(c),(f),(i) show those recon-
structed via the perspective equations (5,7). In all cases the shapes were achieved

Table 1. Estimation errors for σ and τ for orthographic and perspective cases (degrees)

Average error - Orthographic Average error - Perspective

Image |εσ| |ετ | |εσ| |ετ |
D6 5.24 3.10 1.37 3.10

D34 4.80 1.98 2.88 1.93

sponge 1.55 4.30 1.21 4.27

trousers 1.48 1.92 1.86 1.87

rubber rug 4.28 0.44 4.39 0.62
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Fig. 3. Images synthesized from Brodatz textures, original shapes and reconstructions

by using the values of the orientation parameters (σ,τ), which were computed
for all corresponding pixels of the original images. Although the estimates were
not smoothed, the surfaces do look smooth and close to the original (or to part
of a cylinder for real images). Table 1 shows the average errors of the estimated
orientation parameters. In fact the ground truth was known for the first set of
images, and it could be extracted from the images for the second set because
the diameters of the cylinders and their distances from the camera were known.
The errors confirm both the accuracy and robustness of our algorithm.

As stated in section 1, the homogeneity assumption requires some sort of
periodicity/stationarity: the algorithm worked well up to cases when the peri-
odicity of the texture was just one order of magnitude bigger than the main
frequency associated with the shape.

Furthermore, we address the possibility that ridges might superimpose. This
may be the case when a texture composed of close frequencies is slanted. The
superposition can be spotted as it results in gaps in the frequency estimation.
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Fig. 4. Real images of textures and reconstruction

By considering smaller patches of the image (e.g. 96x96 instead of 128x128), the
range of variation of frequencies analyzed by the Fourier transform is smaller
and hence there is less chance of observing the superposition.

The pictures in this paper show the application of the algorithm to relatively
simple developable shapes, where the tilt-ambiguity is solved by assuming con-
vexity. However we plan to extend our simple and robust method to deal with
general shapes, using a technique such as the EM algorithm to disambiguate the
tilt. Finding a robust solution to shape from texture will open the way to possible
applications such as the rendering and the retexturing of clothing ([10]).

6 Conclusions

The study presented here has characterized the variations of the dominant LSFs
in textures via the ridges of their Fourier transforms, and used those to estimate
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the shapes of developable and convex surface textures. Examples of reconstruc-
tion of both semi-synthetic and real images have been given, and errors have been
computed in both cases. Our algorithm is accurate, simple to implement, and has
the potential to be extended to general surfaces, by addressing non-developable
surfaces and implementing an EM-type algorithm to solve the tilt-ambiguity.

To our knowledge, the proposed algorithm is the first to consider the multi-
scale nature of texture to the extent of exploiting all main LSFs. Furthermore,
it is robust against shading, variations in illuminations, and occlusions. Finally,
it is based on the Fourier transform of the image and on a minimal number of
convolutions, results are therefore computationally fast.
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