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Abstract. Many models and algorithms have been proposed since the
shape from texture problem was tackled by the pioneering work of Gib-
son in 1950. In the present work, a general assumption of stochastic
homogeneity is chosen so as to include a wide range of natural textures.
Under this assumption, the Fourier transform of the image and a mini-
mal set of Gabor filters are used to efficiently estimate all the main local
spatial frequencies of the texture, i.e. so as to compute distortion mea-
sures. Then a known method which uses singular value decomposition to
process the frequencies under orthographic projection is considered. The
method is extended to general perspective cases and used to reconstruct
the 3D shape of real pictures and video sequences. The robustness of the
algorithm is proven on general shapes, and results are compared with
the literature when possible.

1 Introduction

Shape from texture dates back to nearly 60 years ago, when Gibson introduced
the visual effects of texture cues in the 3D perception of the human visual system
([1]). Since then many authors have contributed to the study of the shape from
texture problem with different texture and shape assumptions (e.g. [2], [3], [4],
[5], [6], [7], [8], [9], [10]). Our texture model is stochastic, as in [2], [5], [4], [6]
and [10], so as to allow a wider variety of textures than a deterministic model.
This implies the use of local spectral measurements achieved with the Fourier
transform and with Gabor filters. Our initial assumption is homogeneity. It is
frequently used (e.g. [2], [3], [10]) as it results more applicable to real textures
than other more restrictive ones, like texels (e.g. [9]), seldom found in nature,
or isotropy (e.g. [11]), rarely the case. Homogeneity can be seen as periodicity
for deterministic textures, and is formalized as stationarity under translation
for stochastic textures ([5]). Under this condition we assume that all texture
variations are produced only by projective geometry.

Shape from texture is generally about measuring the texture distortion in
an image and then reconstructing the surface 3D coordinates in the scene ([3],
[2], [5], [10]). The present work shows how the method of distortion estimation
based on local spatial frequency (LSF) introduced by Galasso and Lasenby and
presented in [12] can easily be integrated with the reconstruction method based
on singular value decomposition (SVD) of Dugué and Elghadi introduced in [6].
The former is the first to use the multi-scale nature of texture, whereas most of
the related work uses only two preferred directions in the spectral domain (e.g.
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[4],[13]). The latter is a robust method for automatic 3D reconstruction from
LSFs which only assumes that the image contains a frontal point. While the
method in [6] only considers orthographic projections, here we also extend the
method to deal with perspective projections. Moreover we compare some of the
achieved results with those in [12], and we illustrate how the method proposed
here is more robust, can effectively use redundancy to improve estimates, and is
applicable to general non-developable surfaces. Finally application of the method
is shown on a real video sequence, evidencing the sensitivity of the new algorithm
to small changes in the shape of a texture object, which could open the way to
using shape from texture as a non-invasive shape variation analysis.

The article is structured as follows: section 2 explains how the texture is
analyzed to produce distortion information; section 3 presents the projective
geometry; section 4 shows how we can recover the 3D coordinates from the
measured texture distortion; finally, section 5 presents results on real pictures.

2 Texture Description

Here we describe how to compute the instantaneous frequencies for the different
LSFs in the texture, with the use of Fourier transform and minimal sets of
2D Gabor functions. LSFs provide the distortion measures, from which the 3D
coordinates of the texture surface are then reconstructed.

2.1 Estimating the Instantaneous Frequencies

We can analyze an image I(x) using a pass-band filter h(x,u), a function of a
point x = (x, y) and of a central frequency u = (u, v), which is convolved with
the image to provide the local spectrum. As in [14] and [12] we choose 2D Gabor
functions:

h(x,u) = g(x)e2πjx·u where g(x) =
1

2πγ2
e
− 1

2γ2 x·x
. (1)

These functions satisfy exactly the lower bound for the measure of a frequency
u and its position x, given by the uncertainty principle ([15]). Furthermore the
functions are geometrically similar and can be easily arranged to form banks of
filters.

Our goal is to estimate the instantaneous frequencies u of the image points.
[14], [12] and references therein show that this can be done by considering a
Gabor function h(x,u), and its two first order derivatives, hx(x,u) and hy(x,u):

|ũ(x)| = |hx(x,u) ∗ I(x)|
2π|h(x,u) ∗ I(x)|

|ṽ(x)| = |hy(x,u) ∗ I(x)|
2π|h(x,u) ∗ I(x)| . (2)

The estimate, ũ = (ũ, ṽ), can be assumed to be correct if the measured frequency
is in the pass-band of the filter. The method implies therefore that we set the
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Fig. 1. Brodatz texture D6 (left) and its spectrum amplitude (right)

central frequencies u and the spatial constants γ of the Gabor functions, i.e.
their centers and width, to relevant values.

Unlike Super and Bovik ([14]), who sample the whole 2D frequency plane,
we choose to use the method of Galasso and Lasenby ([12]), i.e. we define small
sets of Gabor functions from the information provided by the Fourier transform
of the image.

2.2 Setting the Gabor Filter Parameters

(a) (b) (c) (d)

Fig. 2. (a) Brodatz texture D6 rendered on a plane; (b) its spectrum amplitude; (c) real
LSFs (yellow areas) represented on the spectrum; (d) chosen Gabor functions (yellow
circles) superimposed on the spectrum

We refer to [12] for a detailed explanation of how the amplitude of the Fourier
transform represents the 2D frequencies of an image. Here we consider the Bro-
datz texture D6 and its spectrum amplitude in figure 1. From the spectrum we
deduce that the texture is mainly characterized by four LSFs, marked with small
yellow circles (only half of the spectrum need to be considered due to symme-
try). By slanting and rotating the texture (fig. 2(a)), the four dots of figure 1
become corresponding areas in the spectrum (fig. 2(b)). Figure 2(c) represents
the instantaneous frequencies of each of the image pixels for the four LSFs (yel-
low areas) on the spectrum (as the image is synthesized, the ground truth, i.e.
the values of each LSF at each pixel, is known and marked on the spectrum). It
is clear from this that non-zero values represent corresponding frequencies of the
images, and that contiguous areas correspond to the same LSF. In our algorithm



4 Fabio Galasso and Joan Lasenby

each area is used to set a distinct group of Gabor functions (yellow circles in fig.
2(d)), i.e. to set distinct sets of central frequencies u (centers of the circles) and
spatial constants γ (their radii).

A significant overlapping of the filters increases the robustness of the estima-
tion. Furthermore the number of filters (and consequently convolutions) varies
with the complexity of the image, but fewer are necessary than if sampling the
whole spectrum (as in [14]), resulting in a significant reduction in computational
expense.

Finally the method exploits the multi-scale nature of the texture, because all
different-scale frequencies are estimated and used in the shape reconstruction.

3 Projection of Texture

Here we describe the viewing geometry and a projection model, to provide a
relationship between the surface texture and the image plane frequencies as a
function of the shape.

Figure 3 illustrates the viewing geometry of [14]. xw = (xw, yw, zw) is the

Fig. 3. Viewing geometry and projection model of [14]

world coordinate system and xi = (xi, yi) is the image plane coordinate system,
placed at zw = f < 0, with |f | being the focal length. The orientation of the
surface is described using the slant-tilt system: the slant σ is the angle between
the surface normal and the optical axis; the tilt τ is the angle between the xi-
axis and the projection on the image plane of the surface normal. The surface is
described by the coordinate system xs = (xs, ys, zs): the xs-axis is aligned with
the perceived tilt direction, the zs-axis is aligned with the surface normal.

The above coordinate systems can be easily extended to general surfaces:
assuming that the surface is smooth and that at any point it can be locally
approximated with the corresponding tangent plane, the equations from [14]
then apply to the tangent plane at the considered point.
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Given the homogeneity assumption in section 1, surface texture frequencies
us corresponding to the same LSF must be the same all over the surface texture.
However the xs coordinate system changes with the tilt-direction, as the xs axis
is aligned with it at each point. For aligning the xs coordinate system we counter-
rotate it by the angle −τ on the tangent plane, so as to have xs oriented along
the same direction in a virtual unfolded surface texture.

This system of coordinates was first introduced by Dugué and Elghadi [6],
who illustrate the relationship between xi and xs, and between the frequencies
on the image and surface texture, ui and us, in the orthographic case. Here we
generalize the orthographic relationships to the general perspective case.

The transformation matrix between the aligned xs and the xw coordinate
system is

xw =




cos σ cos τ − sin τ sin σ cos τ
cosσ sin τ cos τ sin σ sin τ
− sin σ 0 cos σ







cos τ sin τ 0
− sin τ cos τ 0

0 0 1


xs +




0
0
z0


 , (3)

which we combine with the perspective projection equation between xw and xi

xi =
f

zw

[
1 0 0
0 1 0

]
xw , (4)

to obtain the relation between the image plane xi and the surface texture xs

coordinates (note that, from here on, we will take xs to be (xs, ys), since on the
surface texture zs = 0):

xi =
f

zw
R(τ)P (σ)R(−τ)xs , where zw = z0 − sin σ(xs cos τ + ys sin τ) , (5)

R(τ) =
[

cos τ − sin τ
sin τ cos τ

]
and P (σ) =

[
cos σ 0

0 1

]
. (6)

R(τ) and P (σ) are respectively responsible for rotating the system of coordinates
of τ and foreshortening the distances parallel to the tilt direction by a coefficient
cosσ, z0 is the zw coordinate of the image point being considered.

As in [14], we assume that the image intensity I(xi) is proportional to the sur-
face reflectance Is(xs(xi)), and that shading is negligible because it is assumed
to vary slowly compared to Is. Also, as in [14], we compute the relationship
between the frequencies on the image plane ui = (ui, vi) and on the surface tex-
ture us = (us, vs) by using the transpose of the Jacobian of the vector function
xi(xs) in equation 5:

us = J t(xi,xs)ui (7)

with J t(xi,xs) = sin σ
zw

[
xi cos τ yi cos τ
xi sin τ yi sin τ

]
+ f

zw
R(τ)P (σ)R(−τ) , (8)

where zw is the corresponding coordinate of the surface point which projects
to the image point xi. In the orthographic case, as shown by [6], the Jacobian
reduces to

J t(xi,xs) = R(τ)P (σ)R(−τ) . (9)
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The homogeneity assumption can therefore be written as:

us1 = us2 (10)
J t(xi1,xs1)ui1 = J t(xi2,xs2)ui2 (11)

where us1 and us2, the surface texture frequencies at the points xs1 and xs2,
are the back-projections of ui1 and ui2, the image frequencies belonging to the
same LSF measured at two distinct image plane points xi1 and xi2.

4 Computing Surface Orientation

We explain here how our algorithm processes the LSFs computed in section 2
to produce the shape of the surface texture.

Let us consider equation 7 for two different LSFs u′i = (u′i, v
′
i) and u′′i =

(u′′i , v′′i ) measured at the same image point xi:

u′s = J t(xi,xs)u′i and u′′s = J t(xi,xs)u′′i . (12)

The above equations can be combined to write

Us = J t(xi,xs)Ui where Us =
[

u′s u′′s
v′s v′′s

]
and Ui =

[
u′i u′′i
v′i v′′i

]
. (13)

Here the Us contains the surface texture frequencies relative to the two LSFs,
the same all over the surface according to the homogeneity assumption, while
Ui contains the image frequencies for the two LSFs, which are functions of the
particular point.

In the orthographic case we substitute for J t(xi,xs) from 9 in the above
equation:

UiU
−1
s = R(τ)P−1(σ)R(−τ) =

[
cos τ − sin τ
sin τ cos τ

] [
1

cos σ 0
0 1

] [
cos τ sin τ
− sin τ cos τ

]
.

(14)
The above system of four equations in the two unknowns (σ,τ) holds for each
pixel of the image. In the particular case of a frontal point (σ = 0), i.e. when
the orientation of the tangent plane is parallel to the image plane, we have

Us = Ui|σ=0 . (15)

In fact Us will be computed from the Ui estimated at a frontal point, or from
equation 14 at a point of known orientation (see below for discussion on the
frontal point).

Since R is orthonormal and P−1 is diagonal, equation 14 can be compared
with the SVD of the left hand side of the equation, according to which we write

UiU
−1
s = V DV −1 = [vMvm]

[
λM 0
0 λm

]
[vMvm]−1

, (16)
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with V the orthogonal matrix of the eigenvectors (vM , vm) of UiU
−1
s , and D

the diagonal matrix of the corresponding eigenvalues (|λM | > |λm|). Recalling
equation 14 we have

σ = arccos
(

1
λM

)
(17)

τ = 6 (vM ) . (18)

In other words σ is computed from the bigger eigenvalue while τ is oriented in
the direction of the corresponding eigenvector. This is also approximately valid
when the surface is not completely unfoldable, in which case the term D22 of
the diagonal matrix is not exactly 1, as explained in [6].

In the perspective case we substitute for J t(xi,xs) from equation 8 in equa-
tion 13:

f

zw
(I − Y (σ, τ, zw))−1

UiU
−1
s =

[
cos τ − sin τ
sin τ cos τ

] [
1

cos σ 0
0 1

] [
cos τ sin τ
− sin τ cos τ

]
(19)

where Y (σ, τ, zw) =
sin σ

sin σ(xi cos τ + yi sin τ) + f cos σ

[
xi cos τ yi cos τ
xi sin τ yi sin τ

]
.(20)

Again the matrix Us is computed from the Ui frequencies of a frontal point:

Us =
z0

f
Ui|σ=0 , (21)

where f is the focal length and z0 is the zw coordinate of the frontal point.
As in the orthographic case, assuming we know the value of the left hand

side, we can decompose using the SVD:

f

zw
(I − Y (σ, τ, zw))−1

UiU
−1
s = V DV −1 = [vMvm]

[
λM 0
0 λm

]
[vMvm]−1

,

(22)
from which we compute (σ,τ) using equations 17 and 18. However, since Y
actually depends on (σ, τ, zw), we propose an iterative solution:

– the slant σ and tilt τ are estimated orthographically;
– the computed σ’s and τ ’s are integrated to reconstruct the 3D shape, i.e. the

zw is estimated with the method of Frankot and Chellappa ([16]);
– the matrix Y (σ, τ, zw) and the left hand side of equation 19 are computed;
– σ’s and τ ’s are updated from the SVD and the procedure iterates until

convergence.

Convergence of the algorithm has been verified empirically, furthermore we ob-
serve that matrix Y is usually small with respect to the unitary matrix I. In fact,
a few iterations are usually enough to reach convergence, and this is achieved
even when initializing the algorithm with the wrong (τ ,σ,zw) estimate.

The procedure needs a frontal point or a point with known orientation. As
in [13], we can either manually input the orientation of a point (hence Us is
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computed from equations 14 or 19), or assume that the image displays a frontal
point (in which case Us is computed using equations 15 or 21).

The presence and position of a frontal point can be detected using the method
of [4], which easily integrates with our algorithm. As shown in [12], we only
consider two LSFs to write down the product of the canonical moments

√
mM

of [4] as √
mM = |u1v2 − u2v1|. (23)

It can be shown that the above is the inverse of the area gradient (see [3]),
computed using the two frequencies. Its minimum gives the frontal point.

With the method described, we get a reconstructed shape for each pair of
LSFs. By using equation 7 and the determined (σ,τ ,zw), we can backproject the
frequencies ui to the surface texture. The homogeneous assumption states that
the frequencies computed in this way should be the same and that their variance
should therefore be zero. Hence we choose the shape associated with the lowest
variance, assuming that lower values, closer to the ideal zero value, correspond
to better estimates.

Using two LSFs does not reduce the applicability of our method, because
most real textures have at least two LSFs. On the other hand, the over-specification
of the systems of equations and the mathematical structure imposed by the SVD
provide robustness to noise, as discussed in section 5. Finally, the algorithm lends
itself to parallel implementation, because filters and LSFs can be processed in-
dependently and implemented separately.

5 Results

We demonstrate our method on two sets of real images. The first set (fig.
4(a),(d),(g)) is taken from [12], with which we compare our results. Figures
4(b),(e),(h) show the orthographic reconstructions, while figures 4(c),(f),(i) show
the perspective reconstructions. Table 5 shows the average error for the orienta-
tion parameters σ and τ (|εσ| and |ετ | respectively), alongside the corresponding
error from [12]. Compared with the most recent literature (e.g. [10]), our results
are accurate, and the pictures in figure 4 show robustness against changes in il-
lumination, self shadowing (e.g. 4(a)) and imperfections (e.g. 4(g)). The slightly

Table 1. Estimation errors for σ’s and τ ’s for orthographic and perspective cases
(degrees), compared with results from [12]

Average error - Orthographic Average error - Perspective

New Method Method in [12] New Method Method in [12]

Image |εσ| |ετ | |εσ| |ετ | |εσ| |ετ | |εσ| |ετ |
sponge 1.11 4.26 1.55 4.30 1.07 4.48 1.21 4.27

trousers 2.19 5.14 1.48 1.92 2.14 5.50 1.86 1.87

rubber rug 3.28 5.23 4.28 0.44 2.92 5.45 4.39 0.62
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(a) Sponge
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(c) Sponge - perspective re-
construction

(d) Trousers
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(g) Rubber rug
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(h) Rubber rug - ortho-
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(i) Rubber rug - perspec-
tive reconstruction

Fig. 4. Real images of textures and reconstruction

higher error in some cases is repaid by increased robustness and by the applica-
bility the new algorithm has to non-developable shapes, as discussed later on in
this section.

The second set of images is extracted from a video sequence of a textured
cloth laid on a slowly deflating balloon. The video was shot with a Pulnix TM-
6EX, at a resolution of 400x300 with 256 levels of gray. Every frame was pro-
cessed and the 3D shape reconstructed for each of them (top row in fig. 5 shows
a sequence of four frames [1,100,200,300], mid and bottom rows show the ortho-
graphic and perspective reconstructions respectively). Reconstructions are valid
despite image quality being non-optimal. Furthermore the proposed distortion
measure and reconstruction algorithm were able to detect small changes in the
shape from frame to frame.

Figure 6(a) shows the perspective reconstruction of the first frame of the real
video sequence in figure 5, achieved using the algorithm from [12]. It is clear
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Fig. 5. Frames extracted from the real video sequence of a textured cloth laid on a
deflating balloon. Top row: frames 1,100,200,300; Mid row: respective orthographic
reconstructions; Bottom row: corresponding perspective reconstructions

from the reconstruction that at some pixels the orientation parameters were
misestimated. In fact the algorithm from [12] estimates two sets of orientation
parameters separately with the two LSFs considered for each pixel, and then
chooses the one set which minimizes the errors for both the equations for the
two LSFs. However it does not always chooses the better estimation. In fact
when a tilt direction is orthogonal to the spectral direction of a LSF, then the
foreshortening effect is null and the shape can only be recovered by considering
the distortion due to perspective convergence to vanishing points (e.g. compare
figure 6(b), LSF with spectral direction orthogonal to the tilt direction of the
cosine shape underneath, and figure 6(c), a second LSF is superimposed with a
spectral direction parallel to the tilt direction, which makes it effectively possible
to recognize the shape of the cosine). In addition we note that laying a textured
cloth on a sphere-like shape, i.e. non-developable, includes some natural stretch-
ing, meaning that the homogeneity assumption is only approximately true. This
implies noise in the distortion estimation, which adds to the noise always present
in real pictures. Figure 6(d) shows the spectral directions of the two main LSFs
for the considered frame superimposed on the image. These noise sources im-
ply that, for example, some pixels having a tilt along the spectral direction of
frequency 2 are estimated using frequency 1, and are therefore misestimated.

On the other hand, the algorithm proposed here considers the two LSFs to-
gether. If their spectral directions do not coincide, our method can deal with all
tilt directions. Moreover, thanks to an effective redundancy and to the use of
eigenvalues and eigenvectors, the algorithm proposed here is definitely more ro-
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Fig. 6. (a) perspective reconstruction of frame 1 from the video sequence in fig.5,
achieved using the algorithm of [12]; (b) cosine textured with a LSF orthogonal to the
tilt direction; (c) cosine textured with a LSF orthogonal to the tilt direction (same as
(b)) and a second LSF directed parallel to the tilt direction; (d) frame 1 from the video
sequence in fig.5 with the spectral directions of its two main LSFs superimposed in the
center

bust: it can cope with more noise and it can reconstruct general shapes, including
non-developable shapes.

When used to process the whole real video sequence, the algorithm of [12]
failed on some frames. The main reason for this is that it estimates each pixel
of the image from a previously estimated close pixel. In this way a single error
is propagated and can compromise the whole reconstruction. On the other hand
our new algorithm estimates every pixel from the frontal point, therefore single
errors are isolated and naturally ignored in the final integration of σ’s and τ ’s.

As stated in section 1, the homogeneity assumption requires some sort of pe-
riodicity/stationarity: the algorithm works well in cases where the periodicity of
the texture is more than one order of magnitude bigger than the main frequency
associated with the shape. As in [12], the well known tilt ambiguity is solved
assuming convexity. However using a technique such as an EM algorithm, will
make our algorithm applicable to more complex shapes.

Finding a robust solution to shape from texture will open the way to possible
applications such as the rendering and the retexturing of clothing. The sensitivity
of our algorithm to small changes, as in the video sequence result, also makes it
possible to use laid-on textures as a non-invasive way of studying shape changes
of objects.

6 Conclusions

A method to recover the 3D shape of surfaces from the spectral variation of
visual textures has been presented. In particular, the distortion measure has
been characterized by local spatial frequencies and estimated with the Fourier
transform of the image and with a minimal set of Gabor filters. Then the 3D
coordinates of the shape have been reconstructed with a known method which
uses singular value decomposition to process the frequencies under orthographic
projection. Such a method has here been extended to the general perspective
cases and used to reconstruct the 3D shape of real pictures and video sequences.



12 Fabio Galasso and Joan Lasenby

The results are accurate and comparable with the most recent literature.
Robustness against shading, variations in illuminations, and occlusions have been
proven. Furthermore the proposed algorithm can effectively use redundancy and
is applicable to general non-developable shapes. Finally its sensitivity to small
shape changes has been illustrated, and its use to non-invasively study textured-
object modifications has been proposed for further study.
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