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Abstract: Is the detection of people in top views any easier than from the much researched canonical fronto-parallel
views (e.g. Caltech and INRIA pedestrian datasets)? We show that in both cases people appearance vari-
ability and false positives in the background limit performance. Additionally, we demonstrate that the use
of fish-eye lenses further complicates the top-view people detection, since the person viewpoint ranges from
nearly-frontal, at the periphery of the image, to perfect top-views, in the image center, where only the head
and shoulder top profiles are visible. We contribute a new top-view fish-eye benchmark, we experiment with
a state-of-the-art person detector (ACF) and evaluate approaches which balance less variability of appear-
ance (grid of classifiers) with the available amount of data for training. Our results indicate the importance
of data abundance over the model complexity and additionally stress the importance of an exact geometric
understanding of the problem, which we also contribute here.

1 Introduction

The detection of people has large relevance in the
understanding of static and moving scenes, esp. since
actions, human interactions and surveillance scenar-
ios usually revolve around people. When possible, a
top-view camera is preferable because it reduces the
amount of person-person occlusion (cf. (Tang et al.,
2014)). Additionally fish-eye lenses enlarge the field
of view, which simplifies longer-term tracking, essen-
tial for the higher level understandings.

This work considers the nearly unaddressed topic
of top-view person detection with fish-eye lenses
from single images. Much research has addressed
fronto-parallel views (Benenson et al., 2014), and
there has been considerable work on surveillance sce-
narios (Stauffer and Grimson, 1999; Kaur and Singh,
2014; Rodriguez and Shah, 2007) but the frame-based
top-view detection has only appeared recently (Chi-
ang and Wang, 2014; Tasson et al., 2015), not yet at
mainstream video conferences.

As for fronto-parallel views such as in Cal-
tech (Dollár et al., 2009) and INRIA (Dalal and
Triggs, 2005), top-view person detection is compli-
cated by the high variability of people poses, e.g.
standing, turning, crouching etc., and the false alarms
from the background. Additionally, esp. in the case of
fish-eye lenses, the view-point of the observed people
changes hugely as soon as they move from the pe-

Figure 1: Detection of top-view people in fish-eye imagery
is a challenging emerging topic. In addition to the difficul-
ties of detection in canonical frontal views (pose changes
and false detections), view-point changes dramatically com-
plicates the task. We provide analysis of a state-of-the-art
detection model, ACF (Dollar et al., 2014), geometric mod-
elling of the fish-eye imagery and experimental evaluation
on a new dataset.

riphery of the image (where they are approximately
fronto-parallel-looking) to the image center, where
only the top of their head and shoulder profiles are



visible, as illustrated in Figure 1.
Here, we first acquire and annotate a dataset, large

enough for model learning and evaluation, illustrated
in Section 3. Then we consider the Aggregate Chan-
nel Feature (ACF) detector (Dollar et al., 2014) and
extend it to grid of ACFs, to analyze the importance
of the amount of training data Vs. the model complex-
ity, in Section 4. We introduce the geometric model
in Section 5, with an empirical study of its symme-
try. Experiments in Section 6 support our statements,
i.e. the open challenges, the importance of data and
geometry.

2 Related work

Over decades of research, people detection liter-
ature has achieved grand results (Dollár et al., 2012;
Benenson et al., 2014; Zhang et al., 2016), largely
aided by more challenging and realistic datasets, such
as INRIA (Dalal and Triggs, 2005), Caltech (Dollár
et al., 2009) and KITTI (Geiger et al., 2012). Here we
review the main people detection models, then com-
pare our work to surveillance literature. Finally we
illustrate related work on top-view people detection
and the relevant geometric modelling.

As maintained in (Benenson et al., 2014), three
main models have been fuelling pedestrian detection
research: deformable parts models (DPM) (Felzen-
szwalb et al., 2010), boosting and integral channel
features (ICF) (Dollár et al., 2009) and deep learn-
ing techniques based on convolutional neural net-
works (Hosang et al., 2015; Tian et al., 2015b).

DPM models attract as they cast the pedestrian
detection problem as a structured one, i.e. detecting
a person implies finding all of its composing parts,
e.g. head, torso, limbs. While the model comes
with the promise of resolving occlusion and change
of view-points thanks to the locality of parts, it re-
mains more cumbersome on the computational side,
requiring detailed engineering to reach real-time per-
formance (Sadeghi and Forsyth, 2014). Further to
their large computational complexity, DPM models
are currently not state-of-the-art, thus we do not con-
sider them here.

Boosting and ICF (Dollár et al., 2009) models de-
rive directly from the pioneering work of (Viola and
Jones, 2004). The latest aggregation channel fea-
tures (ACF) (Dollar et al., 2014) improve the im-
age representation (ten channels involving histograms
of oriented gradients, cf. HOG, gradient magnitudes
and color) while simplifying the aggregation (a mere
pooling over 2x2 pixel grids). The resulting boosting-
based ACF model is capable of 30 fps speed and its

performance still remains close to the state-of-the-
art. Even more interestingly, current best performance
builds directly on top of ACF (Hosang et al., 2015;
Tian et al., 2015b; Zhang et al., 2015; Tian et al.,
2015a; Yang et al., 2015; Cai et al., 2015; Zhang
et al., 2016), which it enriches with CNN features.
Both from a computational and performance perspec-
tive, ACF makes the most sensible candidate for our
top-view person detection work. We extend ACF to
include grids of ACF (cf. Section 4) and the geomet-
ric lens modelling (cf. Section 5).

Successful CNN models have so far built on top
of ACF (Hosang et al., 2015; Tian et al., 2015b; Tian
et al., 2015a; Cai et al., 2015) but have not replaced it.
Additionally, CNN models require much larger com-
putation and do not yet reach the efficiency of ACF.
While the recent proposed model (Angelova et al.,
2015) may achieve up to 15 fps, it still requires a GPU
and gigabytes of memory. Since we aim to a deploy-
ment of our top-view detection system onto an em-
bedded device, we omit consideration of CNN mod-
els here, proposing them as future extension of this
work.

There is a large body of surveillance literature
which relates to our work (Rodriguez et al., 2009;
Roth et al., 2009; Rodriguez et al., 2011; Sternig
et al., 2012; Corvee et al., 2012; Paul et al., 2013;
Idrees et al., 2015; Solera et al., 2016). Surveillance
generally implies fixed cameras detecting and track-
ing people from a viewing angle of∼ 45◦. Differently
from this, our top-view imaging is acquired from a
∼ 90◦ (zenithal) viewing angle. Our typical pedes-
trian appearance includes therefore the fronto-parallel
and ∼ 45◦ of surveillance (peripheral image areas),
but it additionally includes top views (central areas),
with only head and shoulders visible. Additionally,
we adopt a fish-eye lens and, most importantly, we
uniquely consider the detection task, as we believe
this crucial for performance, before a tracking-based
temporal reasoning.

Among the surveillance work, we draw inspira-
tion from grid of classifiers (Roth et al., 2009; Sternig
et al., 2012) and ask ourselves: may performance im-
prove if different classifiers are adopted for diverse
viewing poses? We experimentally answer this ques-
tion in Section 5.

Two very recent papers are relevant to our
work, i.e. (Chiang and Wang, 2014; Tasson et al.,
2015). Both of them consider top-views of peo-
ple, for the first time. The first considers a simple
HOG+SVM (Dalal and Triggs, 2005), while the sec-
ond adopts DPM. We draw inspiration from (Chiang
and Wang, 2014) for initial geometric symmetry con-
siderations and from (Tasson et al., 2015) for the la-



belling paradigm. We cannot compare to either work
as neither the code nor the datasets are available, but
we are confident that a more state-of-the-art-aware
choice of ACF would play to our advantage.

Finally, while previous work has studied the cam-
era geometric modelling (Kannala and Brandt, 2006;
Scaramuzza et al., 2006; Puig et al., 2012) for fish-eye
lenses, to the best of our knowledge we are the first to
employ a fish-eye geometric modelling in the context
of people detection.

3 A novel benchmark for top-view
people detection with fish-eye
lenses

The novel benchmark should be large and chal-
lenging enough, to provide long lasting testbeds for
new models and algorithms. We describe here the
data acquisition, the non-trivial choice of an annota-
tion standard and the proposed metrics.

3.1 Data acquisition

As a valuable resource for training, validation and
testing, the dataset should offer:
Person imagery: The number of people in the dataset
should be large enough and also, more importantly,
there should not be overlaps between the training and
test sets, as for generalization to unseen people;
Background imagery: The trained person detector
should generalize to new scenes. This requires there-
fore enough background imagery, also distinct across
the training and test sets;
Repeatable setup: Towards the future application
and extension of this dataset for top-view activity
recognition, tracking or social group formation, the
installation should be repeatable. We set up there-
fore the camera facing down from the ceiling. We
choose a commercial 2MP camera at 30 fps with a
200◦ field-of-view (FOV) lens. Altogether, this re-
sults in 1080x1080 images with 140◦ FOV.

The data collection is time-consuming, esp. the
collection of background imagery as it implies re-
installing the camera in different physical locations.
To maintain a balance between person/background
samples, we take two kinds of data (sample frames
are shown in Figure 2):
One-minute videos with people: Footage where
a person performs under the camera various poses
in different positions, possibly interacting with the
scene, e.g. sitting at a desk, moving objects. This is

Figure 2: Sample dataset frames. Left and center images il-
lustrate how videos of people were collected from any kind
of background environment while the right image illustrates
videos of empty scenes w/o person presence. The collected
video data in top view perspective, which are generally un-
available in the common literature, enable background mod-
elling with generalization to unknown scenes.

split into a test and training sets, maintaining the peo-
ple and scene separately;
Single frames of background (BG): These images
only contain empty scenes (for background samples)
and are only used at training time (and do not overlap
with the test set).

3.2 Data annotation

It is an open research question how to label such
data. Let us consider Figure 1. People walking at
the peripheral areas of the image appear similar to the
fronto-parallel views of Caltech (Dollár et al., 2009),
with their head-feet axes directed towards the center
of symmetry, approx. the center of the image. One
might therefore choose a bounding box directed to-
wards this center, as also done in (Chiang and Wang,
2014).

The annotation preference changes significantly
as soon as the person moves towards the center of the
image. There, the head and shoulder top-view pro-
files are only visible and the head-feet directional ef-
fect (towards the center) is negligible when compared
to the body orientation. In the center, the people po-
sition in the image does not matter and a simple rect-
angular bounding box seems preferable, as chosen in
(Tasson et al., 2015).

We follow up on the second direction for labelling:
we ask the annotators to draw rectangular bound-
ing boxes (axis-aligned) everywhere. We leverage
therefore the labelling tool of (Dollár et al., 2009),
which may interpolate annotated sparse frames across
videos. We address and experiment on the align-
ment (crucial for training) in a post-processing step
((Drayer and Brox, 2014) similarly argues for ma-
chine alignment surpassing the user input accuracy).

3.3 Metrics

There is agreement in the literature (Benenson
et al., 2014) on adopting the log-average miss rate



(LAMR) (Dollár et al., 2009). More specifically, a
detection system takes in an image and finally return
a list of detected BBs. The match of the detected BBs
and the ground truth is rated by asserting an area over-
lap of the boxes of more than 50%. LAMR value then
is defined as the geometric mean of detection miss
rate values across different false positives per image
(FPPI) rates, which finally provides a representative
and robust estimate of the detection error at 0.1 false
positives per image.

3.4 Dataset description

Table 1 summarizes the dataset statistics. While each
frame of the videos is labelled, for training and test-
ing we adopt the same policy as in Caltech (Dollár
et al., 2009) and only consider every 20th frame. This
results in a total of 4459 selected labelled frames for
training and 1736 selected labelled frames for testing.

Table 1: Dataset statistics at a glance.

# Videos # BG # Labelled
frames frames

Train set 37 84 89180
Test set 25 – 34720

4 ACF and Grid of ACFs for people
detection

We consider for detection the Aggregate Chan-
nel Feature (ACF) (Dollar et al., 2014) due to perfor-
mance (cf. (Benenson et al., 2014)) and availability,
given the requirement of a CPU architecture. First we
briefly introduce ACF, then we define a polar coordi-
nate system to account for the near-circular symmetry.

4.1 The ACF model

The ACF model adopts multi-scale multi-channel fea-
tures in combination with a boosted tree classifier
(cf. (Dollar et al., 2014) for details). Channels refer to
the gradient magnitude, histograms of gradients and
the image itself in the LUV color space. These are
computed precisely over 4 octaves and are interpo-
lated to 28 scales. Finally average pooling reduces the
feature dimension by aggregation over 2x2 patches.
Detection proceeds via classification of sliding win-
dows, adopting shallow trees, boosted at learning time
via hard-negative mining.

Figure 3: Acquired top-view images present an approx-
imate circular symmetry. 7 rings are defined at increas-
ing distances from the center (black numbers on the white
text boxes). 24 sectors are defined (within rings) accord-
ing to the polar angle θ, with origin at the vertical axis.
Note the black vertical line: only people standing on it
are vertical (heads north, feet south) as in most pedestrian
datasets (Dollár et al., 2009).

4.2 The image symmetry and
coordinate system

Let us refer again to Figure 1. The approximate cir-
cular symmetry of the image naturally favors the def-
inition of rings and sectors for analysis. As illustrated
in Figure 3, we define a system of polar coordinates
based on rings (7 circular areas at increasing radial
distances) and sectors within them (24 sectors, based
on an angular coordinate θ from the vertical axis, each
sized 15◦). Walking from ring 7 to 1, people go from
a frontal to a top-down view. Walking along θ (across
sectors) they maintain their viewpoint but rotate.

5 Top-view fish-eye geometry

We define the system geometry and empirically
study the effects of camera parameters and setup on
its circular symmetry.

5.1 Setup and fish-eye imaging model

Figure 4(a) presents a sketch of the setup, with a
standing person observed by a ceiling mounted cam-
era. World (homogeneous) coordinates X are defined
on the ground floor (independent from the camera



(a) Scene setup (b) Fish-eye lens
Figure 4: Scene setup (see Section 5.1) and fish-eye lens model (Kannala and Brandt, 2006).

(a) People setup (b) α = 0◦ (c) α = 3◦ (d) α = 10◦

Figure 5: Simulation of camera projection. Based on Equation (1) a matrix array of stick figures (a), representing standing
people, are imaged (b,c,d) by a camera mounted with varying tilt angles α.

mounting), camera coordinates Xc are consistent with
the camera and α is the camera tilt, as the installed
camera might not be perfectly vertical. We have:

u = K G(θ) [R | t ] X (1)

with K the camera calibration matrix, R and t the
world-to-camera rotation and translation, u the pixel
coordinates (Hartley and Zisserman, 2004).

Equation (1) differs from the pin-hole camera by
the matrix G(θ), describing the relation between the
incoming and outgoing ray angles, cf. Figure 4(b). In
more detail:

G(θ) =

(tan ◦ g)(θ) 0 0
0 (tan ◦ g)(θ) 0
0 0 tanθ

 (2)

where function g models the radial distortion of the
fish-eye lens. We calibrate the whole system as de-
tailed in (Kannala and Brandt, 2006; Scaramuzza
et al., 2006).

5.2 Quasi-circular symmetry

Based on the calibrated projection model, we study
the center of symmetry of the acquired images. To do
so, we sketch standing people on a ground plane (Fig-
ure 5 (a)) and project them onto the images accord-
ing to Equation (1) and different camera tilt angles α

(Figure 5 (b,c,d)). The approximate center of symme-
try is point O (green dot, re-projection of the camera
gravity projection onto the ground floor) which shifts
with the camera tilt α, thus with the camera installa-
tion angle. For small α’s, point O′ (red dot, projection
of the camera principal axis) is close to O. Interest-
ingly O′ only depends on the camera calibration. We
experiment on this in Section 6.3.

6 Results and discussion

We experiment on sample alignment, model com-
plexity and finally on the effects of geometric mod-
elling.

6.1 Training sample alignment by
rotation

First we address model aspect-ratio and the alignment
of positive samples for training, two issues of impor-
tance for performance (Dollár et al., 2009; Benenson
et al., 2014). For testing, we window-slide the com-
puted models. The current bounding boxes (BB) are
axis aligned, while the images depict people across
360◦ rotations (cf. Figure 1). We need therefore to ro-
tate the samples to a reference angle and fit new BBs,
tight on the person.



Table 2: Angle results: detection results of including samples from different angles (samples in ring 6 are used).

LAMR in % (the lower the better)
Selected sectors (in ring 6) Subject-specific BB Circumscribed BB
−7.5◦ < θ < 7.5◦ 96.21 95.73
−22.5◦ < θ < 22.5◦ 99.61 98.52
−37.5◦ < θ < 37.5◦ 97.97 94.94
−52.5◦ < θ < 52.5◦ 95.93 86.8

Table 3: ACF and Grid ACF results.

LAMR in % (the lower the better)
Subject-specific BB Circumscribed BB

Selected rings Single ACF Grid ACF Single ACF Grid ACF
{6} 69.25 69.25 64.02 64.02
{6,5} 67 64.35 68.23 68.21
{6,5,4} 62.79 69.41 66.11 61.22
{6,5,4,3} 65.46 74.01 66.11 67.56
{6,5,4,3,2} 68.93 88.68 70.7 76.74
{6,5,4,3,2,1} 69.94 89.09 70.99 81.43

Initially, we consider for analysis ring 6 just
(cf. Figure 3), which factors out the people size vari-
ation. We align all samples to the vertical north axis
(black line in Figure 3) according to their BB centers.
We fix the aspect-ratio to the average over all samples
on the reference vertical axis. Then, there are two op-
tions for fitting tight new BBs to the rotated ones:

Alignment by circumscribed BB: The rotation of an
off-vertical-axis BB determines a diamond. The sim-
plest way to generate a new BB is by circumscribing
a rectangle.

Alignment by subject-specific BB: We measure
subject-specific BBs at the vertical axis and fit these
to the rotated diamonds. (This excludes from training
a few videos with subjects not crossing the vertical
lines at ring 6.)

Another important parameter is about
padding/stretching to adapt the computed BB to
the estimated aspect-ratio, i.e. most commonly the
shortest width/height is extended by sampling more
background pixels (context), but stretching is also
possible (ACF names this squarify, here we choose
the one with best performance at training time).

In Table 2, we analyze increasing values of peo-
ple rotation, starting from the sector at ring 6 on the
vertical axis, −7.5◦ < θ < 7.5◦, up to the maximum
−57.5◦< θ< 57.5◦. Larger θ-ranges mean more data
and better performance. Unexpectedly, the use of per-
son specific information does not help, although the
large error weakens the finding.

6.2 ACF Vs. Grid ACF

Next, we experiment with the large appearance
changes of people with the distances from the cen-
ter, extending the task from ring 6 to the whole image
gradually. We compare:
Single ACF: One model is learnt from all data, i.e.
from all selected rings. This exposes the one learnt
classifier to highly multi-modal data distributions, i.e.
people viewpoints;
Grid ACF: Separate models are learnt for separate
rings. This simplifies the classifier task, but increases
model complexity, thus requiring more data.

As illustrated in Table 3, both BB alignments at-
tain similar performance. More interestingly, single
ACF always outperforms Grid ACF. This indicates
that data abundance is more important, which is also
supported by the best overall performance (62.79%)
for the selected rings {6,5,4}, i.e. most positive train-
ing samples within the limited test area.

6.3 Effects of geometric modelling

Finally, we question whether using the correct center
of symmetry (point O in Figure 4(a)), instead of the
image center (cf. the previous results) would improve
performance.

Since O is not available (it requires computing the
camera tilt at each installation), we first analyze if O′

may substitute for it, i.e. the calibrated principal axis
projection (cf. Section 5.1). We measure the discrep-
ancy of the BB size when using O′ instead of O (func-
tion of the camera tilt) and compare it to the noise in
the labelling (variation of the user-labelled BBs over



Figure 6: Center of symmetry approximation Vs. labelling
noise.

the video, for the same person and image position).
As shown in Figure 6, O′ may approximate O up to
the camera tilt of 4◦. This applies to our dataset.

The approximate center of symmetry improves
performance by 2% when using subject-specific BBs
(67.99% LAMR, see Figure 7 for detection results),
while the performance for circumscribed BBs reduces
to 71.74%. Intuitively, the better modelling in geom-
etry rewards the more accurate sampling alignment.

7 Conclusions

We have addressed pedestrian detection in top-
views acquired with fish-eye optics. We have gath-
ered a large dataset and analysed the importance of
the annotation protocol with respect to the detec-
tion quality. Finally we have extended the state-of-
the-art ACF detector to top-views by modelling the
system geometry and found out that simpler models
are preferable to richer grid ones, esp. if defining a
grid implies reducing the amount of training data per
model.

For the first time in top-view pedestrian detec-
tion, we have considered the background as a vary-
ing factor. By explicitly separating training and test-
ing background imagery, we ensure that our detec-
tion results generalize across scenes and, most im-
portantly, across scene variations, e.g. due to moving
objects within it. To the best of our knowledge, this
work considers the geometric modelling in relation to
pedestrian detection for the first time. Interestingly,
we have shown that geometry assumes more impor-
tance, the more the labelling can be accurately pro-
vided.
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